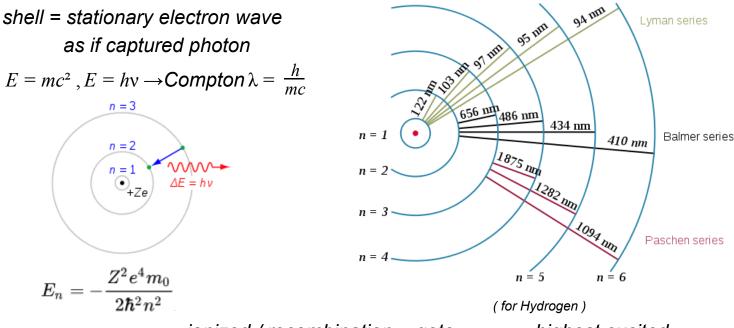
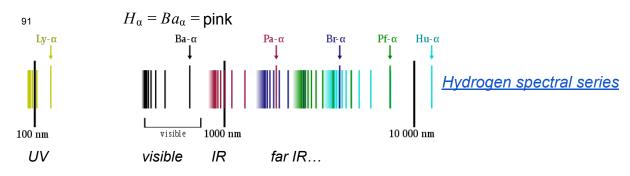
Colors of the Universe


- Nebulae / emission (H_{\parallel} regions)
- reminders on microphysics of light emission
- (+ some bonus sideways :-))

 \rightarrow Let's start with the reminders

(Nebulae color's : <u>next week</u>)


Reminders on microphysics of light emission

1: Atom ; electronic shell \rightarrow de-excited electron + photon

ionized / recombination = goto ∞ (91nm) ~ highest excited

 \rightarrow Rydberg formula: $v = \frac{c}{\lambda} = cRZ^2 \left(\frac{1}{n^2} - \frac{1}{n^2}\right) \rightarrow$ line spectrum

NB: not really Diracs ($mvt \rightarrow Doppler$, + uncertainty principle / Fourier) Anyway, isolated atoms are rare !

1b: Molecules, complex molecules, metals, crystals

Very weak bands (far IR -> microwave -> radio)	e.g., H_2 (µw oven)
Then break to atoms \rightarrow totally different emission look	H : H _I
Then ionize \rightarrow yet totally different emission look	H^+ : H_{\parallel}

2: Black Body spectrum

Molecular mechanical DOF (~T): de-excited + photon \rightarrow accelerated dipoles (~ oscillating EM field) \rightarrow can emit bending → cf: charge acceleration (↗, ↘, ∿) \Rightarrow synchrotron radiation Planck spectrum symmetric stretching infrared ultraviolet visibl vibrational motion rotational motion translational motion T =In fact, quantized too. 6000 K But numerous modes + non-linearities + 5000 I max *macroscopic balance* \rightarrow *continuous spectrum* 4000 K A lot more energy ! 3000 K 1.0 Sideway: 2.0perception: Wavelength λ (µm) no green star :-) peak \neq in λ vs v 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 K

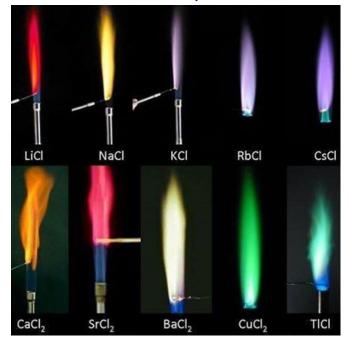
- 3: forbidden modes (Nature >> lab)
 - In practice, continuous exchanges btw DOF (including electron level).
 - E.g.: inelastic collision → excited DOF or electron → inelastic collision
 (→ emerging notion of T, unique global scalar at balance).
 - Deep vacuum: electron might de-excite before next (rare) collision (once mysterious "Nebulium", "Coronium" → forbidden transition)

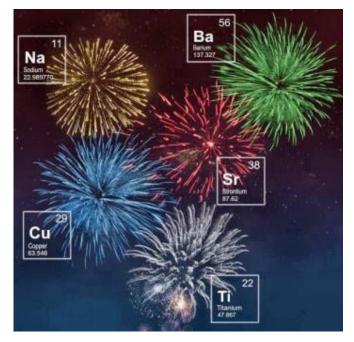
Equivalences and reciprocities

weak emitter \Rightarrow weak absorber \Rightarrow transparent (e.g., H₂. c/: BB) \Rightarrow hard to heat (with radiations) + hard to cool.

Sideway:

- Collapsing gas clouds into star requires dust


```
collapse: heats \rightarrow (2ble)pressure \rightarrow balance gravity
```


dust: radiates \rightarrow cools \rightarrow $P \lor \rightarrow$ gravity win over pressure

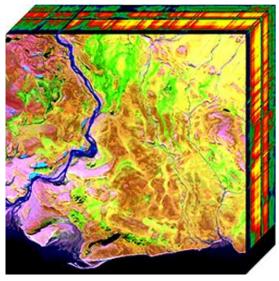
- Reason why black matter is diffuse

Sideway | application: fire & fireworks

- very hot \rightarrow ionized \rightarrow line emission
- kitchen gas, + throw salt etc.
- fireworks: black powder + added "salt"

... + one "special case": (only happens to be ultra frequent) carbon material + oxygen → partial combustion → soot (= nanopartic)

- BlackBody continuous spectrum (~1000°C)
- ultra-bright (masks lines)
- $ultra-opaque (\rightarrow heats a lot, + oven effect)$
- smoke (same, if undispersed)



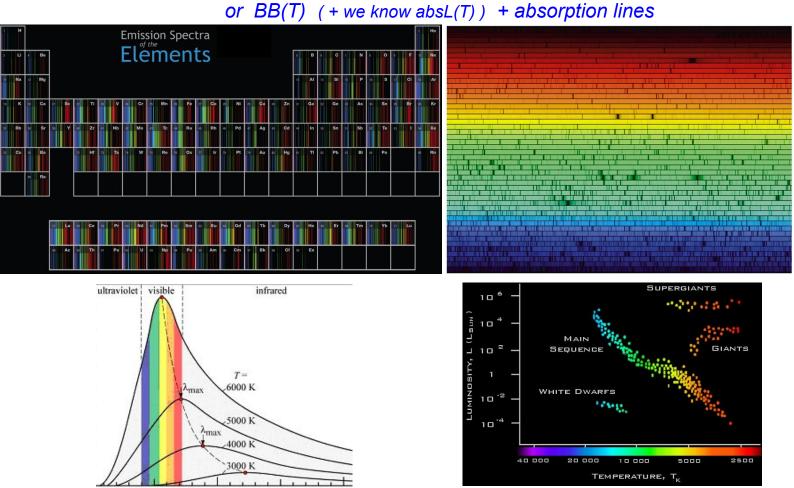
Sideway: hyperspectral images + a world in a pixel

<u>Hyperspectral</u>: a spectrum per pixel Look at surfaces (usually) → directly "read" materials (reflect. spectrum)

 \rightarrow separating lighting easy

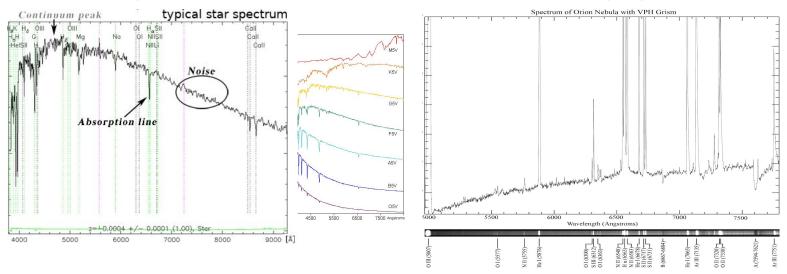
Multispectral: some discrete bands

Astronomy:

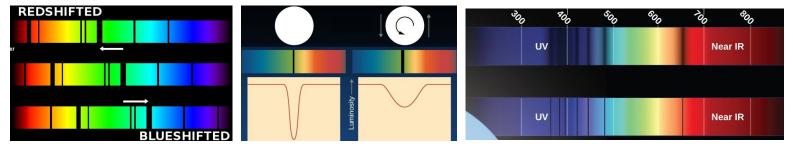

- nebulae quite homogeneous
- lighting simple (no shadows ; direct emission lines...)
- stars = points, + planets & binaries ; transparent medium

But: many things along ray (vol) / in the pixel

Wavelength λ (µm)


 \rightarrow analyzing one pixel.

trick: recognize lines pattern (=material) in spectrum



A world in a pixel

- material mix (+ correlation: e.g. <u>CO</u> for H₂) : pattern
- temperature (BB/IR ; + lines of split molecules / ionization): shape, presence

- radial velocity / high distance (via expansion): red/blue shift of pattern
- rotating: blurry pattern
- binary stars: doubled pattern
- photosphere temperature: blurry absorption lines

- separating distant objects along ray: different shifts superimposed
- magnetic field (+ orientation) : polarization
- planet/binary + period : variation of L in time
 + atmosphere composition: variation of spectrum in time

... all this from one pixel !

Disclaimers

I'm not physicist ;-)

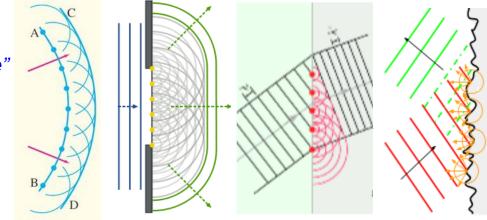
just my understanding & memory + fast sketching

Other emission types reducing to previous:

laser (sync de-excitation), <u>auroras</u>, <u>airglow</u> (ionization, etc), lightning & electric arcs (plasma), photoluminescence [=fluo+phospho] (de-excitation), "neon" tubes (ionization+fluorescence), bio/chemio-luminescence (Δ molec \rightarrow Δ shells)...

Emission modes not covered:

LED (gap - e⁻ annihilation), laser-LED (quantum box), Cherenkov radiation (Vpartics > light), Unruh effect (referential-dep. photons), sonoluminescence (unknown), various particle decays and interactions...


+ passive effects:

effects of diffractions (includes refrac & reflec), scatterings (Rayleigh, Mie,...), interferences & irisations, + everything in materials [+ scale matters]...

Sideway: Refraction as a subset of diffraction Microphysics of refraction

1. Huygens principle

Diffraction everywhere Forget ray / photon "particle" → all waves → whole geometrical optic emerges.

(= coherent Rayleigh)

reacting EM field

incident EM field

incident EM field

reacting EM field

2. Microphysics of refraction: dipole reacting EM field

Dielectric:

- dielectric deforms in EM wave plane
- reacts with a delay (analogous mass-spring)
- charge motion \rightarrow induced EM field (all dirs)
 - \rightarrow Huygens : fronts (partic dist << λ)
- sum: resulting field = late-phased
- accumulation: closer fronts, slower phases "slower light" $v = \frac{c}{n} = \frac{1}{\sqrt{10}\epsilon}$
- but E (group velocity) keeps c speed
 Where is the photon ? :-)
 (could induce miss-predictions)

Conductor (ideal):

- electrons very mobiles
- kills incident wave
- reflect all (th: no color)

Sideway: microphysics of c

For whole kinds of waves, $c = \sqrt{\frac{reactivity}{inertia factor}}$ reason: just the differential equation :

<u>Harmonic oscillator</u>: e.g.: mass - spring Newton: ma = F $(m) \frac{\partial^2 X}{\partial t^2} = -(k) X \rightarrow X = A \cos(\sqrt{\frac{k}{m}} t + \phi)$ (BTW: + forcing term = EM waves \rightarrow dielectric dipole reaction \rightarrow refr. index)

<u>Wave equation:</u> medium = chained oscillators

 $(m') \frac{\partial^2 X}{\partial t^2} = (k') \frac{\partial^2 X}{\partial x^2} \longrightarrow X = A \cos(\frac{2\pi}{\lambda}(x - c_{\phi}t) + \phi), \ c_{\phi} = \sqrt{\frac{k'}{m'}}$ $\rightarrow c_{\phi} = \sqrt{\frac{elasticity(Y \text{ oung})}{density}}$

is the speed of information in a medium (sound, Froude, seism...) <u>EM</u>(Maxwell): $\mu \frac{\partial^2 E, B}{\partial t^2} = \frac{1}{\epsilon} \frac{\partial^2 E, B}{\partial x^2}$ (permittivity⁻¹ 1/ $\epsilon \sim F$ between 2 charges, like k) $\rightarrow c_{\varphi} = \sqrt{\frac{1/\epsilon}{\mu}} = \frac{1}{\sqrt{\mu\epsilon}}$ (material permeability μ & permittivity ϵ)

Vacuum: $c_0 = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ Vacuum is a dielectric medium: has properties: <u>vacuum permittivity</u> $\varepsilon_0 = 8.85... \ 10^{-12} \text{ F/m}$ <u>vacuum permeability</u> $\mu_0 = 4\pi \ 10^{-7} \text{ H/m}$ <u>free space impedance</u> $Z_0 = \mu_0 c = 376.73... \Omega$ <u>vacuum energy</u> $= 10^{-9} - 10^{113} \text{ J/m}^3$:-) \rightarrow fluctuations, creation/annihilation of <u>"virtual" particles</u> +-

 \rightarrow <u>QM vacuum</u> is <u>polarizable</u> (i.e.: dielectric-like dipole)

+ Casimir effect, shifts in material properties (Lamb shift, ...), causes of <u>spontaneous</u> photon emission, ~ van der Waals force, etc.

→ c is not about "light".
 Relativity: "c = max speed, speed of massless, speed of information"
 QM: "c = characteristic of the vacuum 'medium' (speed of info) " (?)